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Efficient Parallelization of an Unstructured Grid Solver:

A Memory-Centric Approach

D. K. Kaushik∗ D. E. Keyes†

For an unstructured grid computational fluid dynamics computation typical of many
large-scale partial differential equations requiring implicit treatment, we describe coding
practices that lead to high implementation efficiency for standard computational and
communication kernels, in both uniprocessor and parallel senses. Moreover, a family
of Newton-like preconditioned Krylov algorithms whose convergence rate degrades only
slightly with increasing parallel granularity, relying primarily on sparse Jacobian-vector
multiplications, can be expressed in terms of these kernels. A combination of the three
(uniprocessor performance, parallel scalability, and algorithmic scalability) is required for
overall high performance on the largest scale problems that a given generation of parallel
platforms supports.

1. Introduction and Motivation

With teraflops-scale computational modeling expected to be routine by 2003-04, accord-
ing to the computational “roadmap” of the Accelerated Strategic Computing Initiative
(ASCI), there is an increasing need for solvers that are highly scalable in the number
of processors. Moreover, since the gap between CPU speed and memory access rate is
widening, we need to move towards a memory-centric view of computation in order to
obtain reasonable per-processor performance for sparse problems, which include most
PDE-based formulations. For that shrinking minority of scientific computations that can
be addressed with regular data structures, such as structured sparse or dense problems,
automated software tools lead to reasonably good [9] or even excellent [4] performance.
Until automated tools like parallel compilers or source-to-source translators can discover
enough of the locality (to minimize the vertical memory hierarchy traffic) and concurrency
(to minimize the horizontal memory traffic) that is latent in most irregular scientific com-
putations, manual expression of locality and concurrency seems to be the key to achieving
high performance. For the purpose of this characterization, we can define a problem as
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irregular when its data access patterns are themselves data-dependent. Fortunately, in
the context of PDE-based simulations these irregular patterns are executed many times;
for instance, it may be necessary to form the fluxes over an unstructured grid a thousand
times in the process of obtaining a highly converged solution. In such cases, the work
of partitioning and ordering is easily amortized with good performance as the reward.
To illustrate these claims, we present parallelization and performance tuning experiences
with a three-dimensional unstructured grid Euler code (compressible and incompressible)
from NASA, which we have implemented in the PETSc [3] framework and ported to many
machines.

2. Memory-Centric Approach

We view a PDE computation primarily as a mix of loads and stores with embedded
floating point operations (FLOPs). Since FLOPs are cheap, we concentrate on minimizing
memory references and emphasize strong sequential performance as one of the factors
needed for aggregate performance worthy of the theoretical peak of a parallel machine
[7]. We use interlacing (creating spatial locality for the data items needed successively in
time), structural blocking for a multicomponent system of PDEs (cutting the number of
integer loads significantly, and enhancing reuse of data items in registers), and vertex and
edge reorderings (increasing the level of temporal and spatial locality in cache).

The basic philosophy of any efficient parallel computation is “owner computes,” with
message merging and overlapping communication with computation where possible via
split transactions. Each processor “ghosts” its stencil dependences on its neighbors’ data.
Grid functions are mapped from a global (user) ordering into contiguous local orderings
(which, in unstructured cases, are designed to maximize spatial locality for cache line
reuse). Scatter/gather operations are created between local sequential vectors and global
distributed vectors, based on runtime-deduced connectivity patterns. For PDEs, work
is performed on the volume and communication is performed on the surface of each
subdomain. If a roughly constant number of vertices and edges is maintained on each
processor as the number of processors and the size of the PDE grid grow proportionally,
the fraction of parallel overhead remains fixed and Amdahl’s Law is defeated [14].

3. Parallel Newton-Krylov-Schwarz Solvers and Software

Our framework for an implicit PDE solution algorithm, with pseudo-timestepping to
advance towards an assumed steady state, has the form:

F`(u`) ≡ (
1

∆t`
)[u` − u`−1] + f(u`) = 0, (1)

where ∆t` → ∞ as ` → ∞, u represents the fully coupled vector of unknowns, and the
steady-state solution satisfies f(u) = 0.

Each member of the sequence of nonlinear problems, F`(u`) = 0, ` = 1, 2, . . ., is solved
with an inexact Newton method. The resulting nonsymmetric linear Jacobian systems
for the Newton corrections, namely

∂F`

∂u
(u`) δu = −F`(u`), (2)
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are solved with an appropriate Krylov method, namely GMRES, relying directly only
on matrix-free operations. In particular, based on the multivariate Taylor theorem, we
replace the Jacobian-vector products required in a Krylov method,

∂F`

∂u
(u`) v

for an arbitrary vector v, with

1

h
[F`(u` + hv) − F`(u`)],

where h is an appropriately chosen scalar.
The Krylov method needs to be preconditioned for acceptable inner iteration conver-

gence rates, and the preconditioning can be the “make-or-break” feature of an implicit
code. A good preconditioner saves time and space by permitting fewer iterations in the
Krylov loop and smaller storage for the Krylov subspace. An additive Schwarz precondi-
tioner [5] accomplishes this in a concurrent, localized manner, building an approximate
inverse to the global Jacobian out of approximate solutions within each subdomain of
a partitioning of the global PDE domain. Schwarz methods are distinguished by the
amount of overlap in the partitions governing each subdomain and by the presence or
absence of a coarse grid spanning the independent subdomains. A beautiful theory exists
[15] quantifying the convergence gains of overlap and the use of multiple levels, which have
to be balanced against the cost of these operations on real parallel computer hardware.
In our context, the diagonal term in the Jacobian of F` proportional to 1

∆t`
endows the

Jacobian with better conditioning than would be present in a purely elliptic formulation.
While our parallel solver has overlap and coarse grid functionality, we do not employ
either in the results reported herein. The decision not to employ a coarse grid leads to
poor conditioning in the final nonlinear iterations, when ∆t is built up towards a value
which is effectively infinity, for the approach to the steady state [13]. However, most of
the linear work occurs for smaller values of ∆t.

Applying any preconditioner in an additive Schwarz manner tends to increase flop rates
over the same preconditioner applied globally, since the smaller subdomain blocks main-
tain better cache residency, even apart from concurrency considerations. Combining a
Schwarz preconditioner with a Krylov iteration method inside an inexact Newton method
leads to a synergistic parallelizable nonlinear boundary value problem solver with a clas-
sical name: Newton-Krylov-Schwarz (NKS) [8]. Combined with pseudo-timestepping, we
write “ΨNKS.”

We employ the PETSc package [3], which features distributed data structures — in-
dex sets, vectors, and matrices — as fundamental objects. Iterative linear and nonlinear
solvers, implemented in as data structure-neutral a manner as possible, are combinable
modularly, recursively, and extensibly through a uniform application programmer inter-
face. Portability is achieved through MPI, but message-passing detail is not required in
user code. We use one of many flavors of MeTiS [10] to partition the unstructured grid.

4. Parallel Port of FUN3D

This section briefly describes the legacy code upon which our port is based, our phi-
losophy of parallelization, a history of the porting process, and illustrative tuning of the
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pseudo-timestep parameter, compiler flags, and partitioner flavors. Our purpose in the
limited available space is not to be comprehensive, but to highlight aspects likely to be
of interest to others facing similar objectives.

4.1. Description of FUN3D
The demonstration code, FUN3D, is a tetrahedral vertex-centered unstructured grid

code developed by W. K. Anderson of the NASA Langley Research Center for compressible
and incompressible Euler and Navier-Stokes equations [1,2]. FUN3D uses a control volume
discretization with variable-order Roe schemes for approximating the convective fluxes
and and a Galerkin discretization for the viscous terms. FUN3D is being used for design
optimization of airplanes, automobiles, and submarines, with irregular meshes comprising
several million grid points. The optimization loop involves many analysis cycles. Thus,
time to reach the steady-state solution in each analysis cycle is crucial to conducting the
design optimization in reasonable amount of time. Our effort, from the beginning, has
been focused on achieving small time to convergence without compromising scalability,
by means of appropriate algorithms and architecturally efficient data structures.

4.2. Methodology of the Parallelization
The parallelization of unstructured mesh codes is complicated by the fact that no two

interprocessor data dependency patterns are alike. Further, the user-provided global
ordering may be incompatible with the subdomain-contiguous ordering required for high
performance and convenient single program multiple data (SPMD) coding.

The philosophy of our SPMD implementation is as follows:

• We follow the “owner computes” rule under the dual constraints of minimizing the
number of messages and overlapping communication with computation.

• Each processor “ghosts” its stencil dependences on its nearest neighbors, in our case
with a one-level halo. Because of the second-order convective scheme, two levels of
halo of the primitive variables are needed in some directions, but one two-level halo
exchange may be replaced with two one-level halo exchanges — one on the primitive
variables followed by one on their gradients. We have experimented with a two-level
halo but memory requirements become quite prohibitive at high granularity.

• We enforce a local ordering on the locally-owned nodes; ghost nodes get ordered after
contiguous owned nodes. This strategy saves CPU cycles, since it avoids searches
while deciding if a node is local or not, and the memory flag that would otherwise
be required to distinguish a local or ghost node. Figure 1 shows different orderings
that arise as a result of 2-way partitioning for a simple 2D grid.

• Scatter/gather operations are created between local sequential vectors and global
distributed vectors, based on runtime connectivity patterns.

• Newton-Krylov-Schwarz matrix-vector and flux evaluation operations are translated
into local tasks and communication tasks, nonblocking for overlap where the hard-
ware supports it.
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Figure 1. Illustration of three different orderings (user endowed, global library endowed,
and local library endowed) for the two-way partitioning of a simple mesh. Note that
within each partitioning halo vertices are ordered last and that orderings are contiguous
within a partition.
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Our parallel experience with FUN3D is with the incompressible/compressible Euler sub-
set thus far, but nothing in the solution algorithms or software changes with additional
physical phenomenology. Of course, convergence rate will vary with conditioning, as
determined by Mach and Reynolds numbers and the correspondingly induced grid adap-
tivity. Furthermore, robustness becomes more of an issue in problems admitting shocks
or making use of turbulence models. The lack of nonlinear robustness is a fact of life that
is largely outside of the domain of parallel scalability. In fact, when nonlinear robustness
is restored in the usual manner, through pseudo-transient continuation, the conditioning
of the linear inner iterations is enhanced, and parallel scalability may be improved. In
some sense, the Euler code, with its smaller number of flops per point per iteration and
its aggressive pseudo-transient buildup towards the steady state limit may be a more, not
less, severe test of scalability.

4.3. History and Software Engineering of the Port
This project was started in October, 1996 and was completed in March, 1997. Since

then it has undergone continuous enhancements. The main goal was two-fold: first, to
demonstrate the viability of a library-based approach to implicit parallel PDE simula-
tion and second, to create a paradigm for integrating (reusing) existing legacy scientific
computing codes with modern (object-oriented) software technology. The library-based
approach has several advantages, such as the availability of a large number of parame-
terizable linear and nonlinear solvers and preconditioners with well optimized distributed
data structures and communication. Object-oriented technology promises encapsulation
to hide the details of implementation from the logical interface, and extensibility to easily
incorporate the future developments into the code.

The five month (part-time) effort mainly focussed on learning FUN3D (a Fortran77
legacy code), PUNS3D (a mesh preprocessor), and PETSc (a C-based library that is
object-oriented at the highest levels). As the parallelization phase proceeded, many new
functionalities were added to PETSc to allow an efficient implementation of an unstruc-
tured mesh solver (hitherto, PETSc had been oriented towards structured mesh compu-
tations). Inasmuch as FUN3D was originally written for vector machines, many data
layout transformations [11] had to be carried out to make it efficient on cache based pro-
cessors. Fortunately, FUN3D had been written without reliance on global COMMON arrays.
Removal of Fortran’s direct memory mapping in the form of COMMON arrays is the first
(and often most time-consuming) part of the distributed memory parallelization process
for most Fortran legacy codes. Approximately 3,300 of 14,400 F77 lines of FUN3D have
been retained (primarily as “node code” for flux and Jacobian evaluations); PETSc solver
routines replaced the rest. We expect that future unstructured mesh code ports will take
significantly less time.

4.4. Performance Tuning of PETSc-FUN3D
A significant amount of effort has been devoted to tuning the performance of the inte-

grated PETSc-FUN3D code. These have occurred on three fronts: algorithmic parameters
(of pseudo-transient continuation, nonlinear solver, and linear solver), compiler flags (to
invoke the best possible optimizations without going to the assembly level), and data
layouts and partitionings (to improve cache performance, and reduce the communication
cost and load imbalances). Some representative results are presented to highlight the
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Figure 2. The effect of initial CFL number on convergence rate. The grid has about 2.8
million vertices. The more aggressive approach to the steady state pays off.

importance of the performance tuning we have carried out for PETSc-FUN3D.
Figure 2 shows the effect of initial CFL number on the convergence rate. In general,

the best choice of initial CFL number is dependent on the grid size and Mach number.
Small CFL adds nonlinear stability far from the solution but retards the approach to the
domain of superlinear convergence to the steady state.

The effect of compiler flags is illustrated in Figure 3; the range of performance variation
is approximately 40%. This histogram reveals that when we comply with IEEE arithmetic,
we get better performance than if we allow the compiler to carry out the transformations
that should be faster but less accurate.

Figure 4 shows the effect of data partitioning using p-MeTiS (which tries to balance
the number of nodes and edges on each partition) and k-MeTiS (which tries to reduce the
number of non-contiguous subdomains and connectivity of the subdomains). k-MeTiS
gives better scalability when the number of subdomains is large in our context.

5. Measuring the Parallel Performance

We use PETSc’s profiling and logging features to measure the parallel performance.
PETSc logs many different types of events and provides valuable information about time
spent, communications, load balance, etc., for each logged event. PETSc uses manual
counting of flops, which are afterwards aggregated over all the processors for parallel
performance statistics. We have observed that the flops reported by PETSc are close to
(within ten percent of) the values statistically measured by hardware counters on R10000
processor.

PETSc uses the best timers available in each processing environment. In our rate
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computations, we exclude the initialization time devoted to I/O and data partitioning.
To suppress timing variations caused by paging in the executable from disk, we preload
the code into memory with one nonlinear iteration, then flush, reload the initial iterate,
and begin performance measurements.

Since we are solving large fixed-size problems on distributed memory machines, it is
not reasonable to base parallel scalability on a uniprocessor run, which would thrash
the paging system. Our base processor number is such that the problem has just fit
into the local memory. We have employed smaller sequential cases to optimize cached
data reuse [11,12] to minimize the execution time. In the results below, we decompose
the parallel efficiency into two factors: algorithmic efficiency, measuring the effect of
increased granularity on the number of iterations to convergence, and implementation
efficiency, measuring the effect of increased granularity on per-iteration performance.

6. Results and Discussion

As emphasized in Section 2, we regard a good uniprocessor implementation as a pre-
requisite to measuring parallel scalability, since a poor uniprocessor implementation can
mask parallel overhead, and return inflated parallel scalability. Therefore, we give exam-
ples of both sequential and parallel performance for PETSc-FUN3D in this section. The
parallel scalability is based on the best sequential form of the code.

6.1. Sample Sequential Performance
As observed in [11] for the same unstructured flow code, data structure storage patterns

for primary and auxiliary fields should adapt to hierarchical memory through: (1) inter-
lacing, (2) blocking of degrees of freedom (DOFs) that are defined at the same point in
point-block operations, and (3) reordering of edges for reuse of vertex data. For vertices
we have used the Reverse Cuthill McKee (RCM) ordering [6], which is known for reducing
cache misses by spatial locality, since a vertex’s data is required in the evaluation of its
neighbors’ stencils.

Table 1 shows the effect of these techniques on one processor the SGI Origin 2000. The
combination of the three effects can enhance overall execution time by a factor of 5.7 (a
table comparing several architectures is available in [12]). To further understand these
results, we carried out hardware counter profiling on R10000 processor. Figure 5 shows
that edge reordering reduces the TLB misses by two orders of magnitude while secondary
cache misses (which are very expensive) are reduced by a factor of 3.5.

6.2. Sample Parallel Scalability Performance
The parallel scalability of PETSc-FUN3D is shown in Figure 6 for a tetrahedral grid

with 2.8 million vertices running on up to 1024 Cray T3E processors. We see that the
implementation efficiency of parallelization (i.e., the efficiency on a per-iteration basis) is
82% in going from 128 to 1024 processors. The number of iterations is also fairly flat over
the same eight-fold range of processor number (rising from 37 to 42), reflecting reasonable
algorithmic scalability. This is much less serious degradation than predicted by the linear
elliptic theory, see [15]). The overall efficiency is the product of the implementation
efficiency and the algorithmic efficiency. The Mflop/s per processor are also close to flat
over this range, even though the relevant working sets in each subdomain vary by nearly
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Table 1
Flow over M6 wing; fixed-size grid of 22,677 vertices (90,708 DOFs incompressible; 113,385
DOFs compressible); MIPS R10000, 250MHz, cache: 32KB data / 32KB instr / 4MB L2.
Activation of a layout enhancement is indicated by a “×” in the corresponding column.
Improvement ratios are averages over the entire code; different subroutines benefit to
different degrees.

Enhancements Results
Field Structural Edge Incompressible Compressible

Interlacing Blocking Reordering Time/Step Ratio Time/Step Ratio
83.6s — 140.0s —

× 36.1s 2.31 57.5s 2.44
× × 29.0s 2.88 43.1s 3.25

× 29.2s 2.86 59.1s 2.37
× × 23.4s 3.57 35.7s 3.92
× × × 16.9s 4.96 24.5s 5.71

a factor of eight.

7. Conclusions and Future Work

Unstructured implicit CFD solvers are amenable to scalable implementation, but care-
ful tuning is needed to obtain the best product of per-processor efficiency and parallel
efficiency. We [12] and others have solved problems of millions of vertices on hundreds of
processors at rates approaching hundreds of gigaflop/s, and we believe such performance is
extensible, with further effort, to the teraflop/s regime. In the future, we hope to enhance
per-processor performance through improved spatial and temporal locality and the ex-
ploitation of “processors in memory” (PIM). We also hope to enhance parallel efficiency
through algorithms that synchronize less frequently, and through multiobjective parti-
tioning, which equidistributes communication (surface) work as well as computational
(volume) work.
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